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Abstract
A recently proposed discrete version of the Schrödinger spectral problem is
considered. The whole hierarchy of differential-difference nonlinear evolution
equations associated with this spectral problem is derived. It is shown that a
discrete version of the KdV, sine-Gordon and Liouville equations is included
and that the so-called ‘inverse’ class in the hierarchy is local. The whole class
of related Darboux and Bäcklund transformations is also exhibited.

PACS numbers: 02.30.Ik, 02.30.Sa, 05.45.−a

1. Introduction

In recent years there has been a growing interest in the field of discrete dynamical systems,
i.e. systems that can be described by ordinary and\or partial, generally nonlinear, difference
equations.

Such systems arise and play an important role in a very large number of contexts and have
an extensive range of applications: mathematical physics, chaos, fractals, disordered systems,
biology, optics, economics, statistical physics, numerical analysis, discrete geometry, cellular
automata, quantum field theory and so on.

Different powerful analytic tools have been developed in the last decades to deal with
nonlinear difference equations (see, e.g., [1] and references therein for recent advances).

We are here interested in nonlinear differential-difference evolution equations which
correspond to isospectral deformations of the new Schrödinger discrete spectral problem
introduced by [2],

ψ(n + 2) + q(n)ψ(n + 1) = λψ(n) n ∈ Z (1.1)

and investigated in [3] and which, therefore, are integrable via the inverse scattering method.
This discrete spectral problem differs from the previously considered discrete versions

of the Schrödinger discrete spectral problem already considered a long time ago in [4–11].
In particular, it was shown in [3] that its spectral theory closely mimics the spectral theory
of the continuous Schrödinger problem in contrast with the spectral theory of other discrete

0305-4470/03/010139+11$30.00 © 2003 IOP Publishing Ltd Printed in the UK 139

http://stacks.iop.org/ja/36/139


140 M Boiti et al

Schrödinger spectral problems previously considered. In addition, in [3] it was shown that this
spectral problem solves a discrete version of the KdV which differs form different versions of
the discrete KdV equation introduced and studied in [12–16].

In this paper we construct the hierarchies of differential-difference equations related to
the spectral problem (1.1) and, in particular, a whole hierarchy of local equations, which as far
as we know is new, showing once more that this spectral problem has peculiar characteristics.
In this class are included the new discrete integrable version of the celebrated KdV found in
[3], the discrete sine-Gordon and Liouville equations.

We also give the explicit recurrence operators to construct the Darboux transformations
and the Bäcklund transformations for the whole class. Of course, the Bäcklund transformations
are interesting per se as difference-difference dynamical systems and moreover they can
construct special solitonic solutions for the considered differential-difference equations.

2. The spectral problem

Let us consider the spectral problem

L(n)ψ(n; λ) = λψ(n; λ) (2.1)

with

L(n) = E2 + q(n)E1 (2.2)

where n is a discrete variable (n ∈ Z), λ ∈ C is the spectral parameter and Ek is the ‘shift’
operator defined by

Ekφ(n) = φ(n + k) k = 0,±1,±2, . . . . (2.3)

This spectral equation is the discretized version of the Schrödinger equation recently obtained
by Shabat [2] iterating Darboux transformations of the continuous Schrödinger equation and
its direct and inverse problems were first introduced and studied in [3].

In the following the ‘potential’ q and consequently the eigenfunction ψ will be considered
to also depend on the continuous time variable t ,while the spectral parameter is considered time
independent, so that we can apply the inverse scattering method and consider the associated
differential-difference nonlinear equations.

In the following we shall often use the shorthand notation:

φ(n) = φ φ(n + k) = φk k = ±1,±2, . . . . (2.4)

We will also use the first-order difference operators

� = E1 − E0 (2.5)

�̃ = E1 + E0 (2.6)

and their inverses

�−1 = −
∞∑

k=0

Ek (2.7)

�̃−1 =
∞∑

k=0

(−1)kEk. (2.8)
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3. Isospectral hierarchy

We are looking for nonlinear discrete evolution equations associated with the isospectral
deformations of the discrete Schrödinger operator L introduced in (2.2). They can be obtained
from the Lax representation

L̇ = [L,M] (3.1)

where M(n, t, Ek) is an opportune shift operator and a dot denotes time differentiation. We
have

q̇(n, t)E1 = V (n, t)E1 (3.2)

where V (n, t) = V (q, qk) is a function depending on q and its shifted values.
To construct the hierarchy of isospectral nonlinear discrete evolution equations we can

use a sort of dressing procedure. Precisely, we look for the recursion operators M and L
which allow the construction of new admissible operators M ′ and V ′ in terms of known M and
V . Following the technique introduced in [17, 18], we start with the ansatz

M ′ = LM + AE0 + BE1 (3.3)

where E0 is the identity operator and A and B are functions, depending on the q and qk, to be
determined in such a way that

V ′E1 = [L,M ′] (3.4)

or explicitly

V ′E1 = q(A1 − A)E1 + (A2 − A + qB1 − q1B + qV1)E
2 + (B2 − B + V2)E

3. (3.5)

Now imposing for compatibility the vanishing of the terms in E2 and E3 and setting, for
convenience,

C = A1 − A (3.6)

we get the two conditions

B2 − B = −V2 (3.7)

C1 + C = q1B − qB1 − qV1. (3.8)

The general solution of the second-order difference equation (3.7) reads

B = b + b̂(−1)n +
∞∑

k=0

V2k+2 (3.9)

where b, b̂ are two arbitrary constants.
Taking into account (3.9) the general solution of the first-order difference equation (3.8)

reads

C = C̃ − q

∞∑
k=0

V2k+1 − 2
∞∑

k=1

(−1)kqk

∞∑
j=0

Vk+2j+1 (3.10)

C̃ = č(−1)n − b

(
q + 2

∞∑
k=1

(−1)kqk

)
+ b̂(−1)n

(
q + 2

∞∑
k=1

qk

)
(3.11)

where č is again an arbitrary constant.
Now, from (3.5), (3.6), (3.10) and (3.11) we get

V ′ = Ṽ + LV (3.12)
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where the recursion operator L is given by

LV = −q

q

∞∑
k=0

V2k+1 + 2
∞∑

k=1

(−1)kqk

∞∑
j=0

Vk+2j+1

 (3.13)

while

Ṽ = q

[
č(−1)n − b

(
q + 2

∞∑
k=1

(−1)kqk

)
+ b̂(−1)n

(
q + 2

∞∑
k=1

qk

)]
. (3.14)

Note that starting from the trivial operators M = 0, V = 0 we get from (3.12) the
nontrivial starting point Ṽ . Indeed, taking into account the fact that b, b̂, c̆ are arbitrary
constants, we have three different independent starting points

V̆ = (−1)nq (3.15)

V = q

(
q + 2

∞∑
k=1

(−1)kqk

)
(3.16)

V̂ = (−1)nq

(
q + 2

∞∑
k=1

qk

)
(3.17)

so that the class of isospectral nonlinear discrete evolution equations associated with the
spectral operator (2.1), (2.2) is a superposition of three hierarchies and reads

q̇ = α(L)V̆ + β(L)V + γ (L)V̂ (3.18)

where α, β, γ are entire functions of their argument. The possibility of using negative powers
of the recursion operator will be considered below.

It is easily seen that the recursion operator L in (3.13) can be written, by using the
difference operators (2.5), (2.6) and their inverses (2.7), (2.8), in the more compact and
elegant form

L = −q��̃−1qE1�−1�̃−1. (3.19)

The explicit form of the recurrence operator M for M (M ′ = MM ⇐⇒ V ′ = LV ) can
be easily obtained from the above formulae (see (3.3), (3.6), (3.9), (3.10), (3.11)).

Remark 1. Note that all the M operators generated by the recursion (3.3) contain only positive
powers of the shift operator E.

Remark 2. Due to the non-local character of the recursion operator L (see (3.13)) and taking
into account the starting points (3.15), (3.16), (3.17), all the equations in the class (3.18) are
apparently non-local (except the rather trivial q̇ = V̌ = (−1)nq). However, it is easily seen
that q̇ = V = q

(
q+2

∑∞
k=1(−1)kqk

)
and q̇ = V̂ = (−1)nq

(
q+2

∑∞
k=1 qk

)
imply respectively

q̇q1 + qq̇1 = qq1(q − q1) (3.20)

q̇q1 + qq̇1 = (−1)nqq1(q1 + q) (3.21)

which are local although not explicit. The first equation was derived and studied in [3].
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4. The ‘inverse’ class

As noted in the previous section, the equations in the class (3.18) correspond to positive shifts
in the Lax operator M. In this section we investigate the class of isospectral nonlinear discrete
evolution equations which corresponds to operators M constructed in terms of negative powers
of the shift operator E.

These equations can be obtained using the inverse of the recursion operator L, namely

L−1 = −E−1��̃
1

q
�−1�̃

1

q
. (4.1)

Thus, given a valid couple M and V , one can obtain a new valid one M ′ = M−1M,V ′ =
L−1V.

Starting from V = 0 and taking into account that an arbitrary constant c is in the ker of
�, we have

Ṽ = L−10 = −2c

(
1

q1
− 1

q−1

)
(4.2)

and the whole ‘inverse’ class of isospectral nonlinear discrete evolution equations reads

q̇ = η(L−1)Ṽ (4.3)

where η is an arbitrary entire function of its argument.
However, in order to study the properties of this class of equations, it is more convenient

to construct it explicitly through the ansatz

M(N) =
N∑

k=1

A(k)Ek−N−1. (4.4)

Inserting the above expression in the Lax equation (3.1), it is easily seen that the functions
A(k) (k = 1, 2, . . . , N) are determined recursively by

qA
(s+1)

1 − qs−NA(s+1) = A(s) − A
(s)

2 A(0) = 0 s = 0, 1, . . . , N − 1. (4.5)

The corresponding nonlinear discrete evolution equation reads

q̇ = A
(N)
2 − A(N). (4.6)

The general solution of (4.5) can be given recursively as follows:

A(s+1) =
a(s+1) +

∑∞
k=0

(
A

(s)

k+2 − A
(s)

k

)
1
qk

∏N−s
j=1 q−j+k+1∏N−s

j=1 q−j

(4.7)

where the constants a(s+1) arise from the solution of the homogeneous part of the equation and
can be chosen equal to zero except a(1) = 1, which gives a convenient starting point for the
iteration.

In spite of the infinite series in (4.7) the A(s+1) are local for any N. In the appendix we
solve explicitly the recursion relation proving by induction that

A(s+1) = (−1)s∏N−s
m=1 q−m

−1∑
k1=−N

k1+1∑
k2=−N+1

· · ·
kj−1+1∑

kj=−N+j−1

· · ·
ks−1+1∑

ks=−N+s−1

Qk1 · · ·Qks
(4.8)

where

Qk = 1

qkqk+1
. (4.9)

For the reader’s convenience, we write here explicitly the first three equations in the hierarchy.
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1. For N = 1 we get

q̇ =
(

1

q1
− 1

q−1

)
(4.10)

which was implicitly considered in [3]. Note that setting

q = 1

u
(4.11)

we get

u̇ = −u2(u1 − u−1). (4.12)

2. For N = 2 we get

q̇ = −
(

1

q2
1

(
1

q2
+

1

q

)
− 1

q2
−1

(
1

q−2
+

1

q

))
(4.13)

which, using the position (4.11), becomes

u̇ = u2 (
u2

1(u2 + u) − u2
−1(u−2 + u)

)
(4.14)

3. For N = 3 we get

q̇ = (α2 − α) (4.15)

α = 1

qq2
−1

(
1

q1q
+

1

qq−1
+

1

q−1q−2

)
+

1

q2
−1q−2

(
1

qq−1
+

1

q−1q−2
+

1

q−2q−3

)
. (4.16)

With the position (4.11) we get the polynomial equation

u̇ = −u2(β2 − β) (4.17)

β = uu2
−1(u1u + uu−1 + u−1u−2) + u2

−1u−2(uu−1 + u−1u−2 + u−2u−3). (4.18)

5. Discrete KdV, sine-Gordon and Liouville equations

Note that the first equation (4.10) in the ‘inverse’ class of the equations related to the discrete
Schrödinger operator (2.2) can be rewritten as

q1q̇ + q̇1q = q

q2
− q1

q−1
(5.1)

and, then, by taking a linear combination with coefficients c and d of this equation with
equation (3.20) of the direct class, we get

q1q̇ + q̇1q = c

(
q

q2
− q1

q−1

)
+ d(q1 − q)q1q (5.2)

which is the equation studied in [3] and for c = 2d reduces to a discrete version of the KdV
equation.

It was already shown in [19] that the discrete sine-Gordon and Liouville equations are
included in the hierarchy of integrable equations related to the discrete Schrödinger spectral
operator (2.2). They can be recovered by using the special dressing method described above.
In fact, if, instead of starting in the iteration procedure from V = 0,M = 0, we start from

M = ∂t V = −q̇ (5.3)
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we get

q̇ = V ′ = −Lq̇ (5.4)

which is a tricky equation since in order to extract from it an evolution equation it must be
solved with respect to q̇ . In order to do this it is convenient to put

q̇ = −γ��̃ e−2ϕ (5.5)

with γ an arbitrary constant and ϕ = ϕ(n, t) a new function and

q = −e2ϕ1�̃P (5.6)

with P = P(n, t) to be determined. Inserting (5.5) and (5.6) into (5.4), we have

P 2
1 − P 2 = e−2(ϕ1+ϕ2) − e−2(ϕ+ϕ1). (5.7)

With an opportune choice of the constant of integration and the sign of P , we get

P = e−(ϕ+ϕ1). (5.8)

Therefore,

q = −eϕ1−ϕ − eϕ1−ϕ2 (5.9)

and the differential-difference equation in ϕ can be obtained by imposing the compatibility
between (5.5) and (5.9). We get

(ϕ̇1 − ϕ̇) eϕ1−ϕ − (ϕ̇2 − ϕ̇1) eϕ1−ϕ2 = γ e−2ϕ2 − γ e−2ϕ. (5.10)

Inserting in it

ϕ̇1 − ϕ̇ = −γ e−(ϕ1+ϕ) + � (5.11)

with � = �(n) to be determined, we derive

�1 e−(ϕ1+ϕ2) = � e−(ϕ+ϕ1) (5.12)

which can be integrated furnishing the evolution equation

ϕ̇1 − ϕ̇ = −γ e−(ϕ1+ϕ) + γ ′ e(ϕ1+ϕ) (5.13)

which, up to a trivial change of function, for γ ′ = γ is the discrete sine-Gordon and for γ ′ = 0
the Liouville equation.

Also the auxiliary spectral problem introduced in [19] for fixing the time evolution of ϕ

can be recovered by using our dressing method. In fact, we have

ψ̇ = −M ′ψ (5.14)

which, since

M ′ = LM + AE0 + BE1 (5.15)

can be rewritten as

ψ̇ = −[L,M]ψ + λMψ − Aψ − Bψ1. (5.16)

Recalling that M = ∂t and denoting λ = −1 − k2, we have

k2ψ̇ = Aψ + (B − q̇)ψ1. (5.17)

Using the formulae obtained for A and B in section 3 and choosing equal to zero the constants
of integration, we get

A = −�̃−1qE1�−1�̃−1V (5.18)

and

B = −E2�−1�̃−1V. (5.19)

Inserting the formulae for q and q̇ obtained in (5.9) and (5.5), we recover the auxiliary spectral
problem derived in [19],

k2ψ̇ = γ e−ϕ1−ϕψ − γ e−2ϕψ1. (5.20)

The second auxiliary problem introduced in [19] is obtained by closing the compatibility
conditions with the discrete Schrödinger spectral problem (2.1).
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6. Darboux and Bäcklund transformations

Let us consider besides (2.1) a second spectral problem with a different ‘potential’, namely let

L̃ψ̃ = λψ̃ (6.1)

with

L̃(n, t) = E2 + q̃(n, t)E1. (6.2)

Let us introduce a Darboux transformation relating ψ and ψ̃ ,

ψ̃ = Dψ (6.3)

whereD is an opportune shift operator depending on q and q̃. This implies a relation between q
and q̃, called the Bäcklund transformation, which can be expressed in the following operatorial
form (see, e.g., [18, 20]):

L̃D − DL = WE1 = 0 (6.4)

where the scalar operator W depends on q and q̃ and their shifted values up to some order.
Now, following a technique introduced in [18], we look for the recursion operators �

and  which allow the construction of a valid couple of D′ and W ′ from the supposed known
D,W , that is such that D′ = �D,W ′ = W .

Consider the following ansatz:

D′ = L̃D + FE0 + GE1 (6.5)

where F and G are functions to be determined requiring that

W ′E1 = L̃D′−D′L (6.6)

for some W ′. We have

W ′E1 = (̃qF1 − qF)E1 + (F2 − F + q̃G1 − q1G + q̃W1)E
2 + (G2 − G + W2)E

3 (6.7)

and imposing the vanishing of the terms in E2 and E3 we get the following conditions:

G2 − G = −W2 (6.8)

F2 − F = q1G − q̃G1 − q̃W1. (6.9)

The general solution of the second-order difference equation (6.8) reads

G = g + g(−1)n − E2�−1�̃−1W (6.10)

where g, g are two arbitrary constants.
The general solution of the second-order difference equation (6.9) reads

F = f + f (−1)n + �−1�̃−1(q1G − q̃G1 − q̃W1) (6.11)

where f, f are two arbitrary constants.
Therefore, inserting (6.10) we have

F = F̃ + F (6.12)

where

F̃ = f + f (−1)n − gE1�−1�̃−1(̃q−1 − q) − g(−1)nE1�−1�̃−1(̃q−1 + q) (6.13)

and

F = E1�−1�̃−1{−q̃−1 + (̃q−1E
1 − q)E1�−1�̃−1}W. (6.14)

From (6.7), (6.12), (6.13) and (6.14) we get

W ′ = W̃ + �W (6.15)
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where
W̃ = (̃qF̃ 1 − qF̃ ) (6.16)

� = (̃qE1 − q)E1�−1�̃−1{−q̃−1 + (̃q−1E
1 − q)E1�−1�̃−1}. (6.17)

Starting from the trivial operatorsD = 0,W = 0 we get from (6.15) a nontrivial Bäcklund
transformation W̃ . Indeed, taking into account the arbitrariness of the constants in (6.13), we
have four different independent starting points so that the class of Bäcklund transformations
reads

4∑
k=1

αk(�)W(k) = 0 (6.18)

where the αk(�) are arbitrary entire functions of their argument and the ‘elementary’ Bäcklund
transformations W(k) are given by

W(1) = (̃q − q) (6.19)

W(2) = (−1)n(̃q + q) (6.20)

W(3) = (q̃E1 − q)E1�−1�̃−1(̃q−1 − q) (6.21)

W(4) = (−1)n(̃qE1 + q)E1�−1�̃−1(̃q−1 + q). (6.22)

The explicit form of the recurrence operator � for D can be easily obtained from the
above formulae.

Remark 3. In the limit q̃ → q , as expected, the operator � becomes the operator L. Let us
note that � can be rewritten as

� = (q − q̃E1)


∞∑

k=0

E2k(q1 − q̃E1)

∞∑
j=1

E2j −
∞∑

k=0

E2kq̃E1

 .

For q̃ = q we get

�q̃=q = (q − qE1)

∞∑
k=0

(−1)kEkqE1�−1�̃−1

and, thanks to (2.8), we have

�q̃=q = L.

7. Concluding remarks

To end this paper we outline a number of possible extensions and generalizations.
First of all we conjecture that the whole hierarchy introduced here is endowed with a

double Hamiltonian structure. Finding such a structure should allow us to exhibit an infinite
number of commuting conservation laws for the whole hierarchy.

Moreover, the technique we used to derive our results (recurrence operators, Lax pairs and
Darboux transformations) can be easily extended to recover differential-difference nonlinear
evolution equations related to non-isospectral deformations of the spectral problem, getting
typically equations with n-dependent coefficients (see [21]).

The Bäcklund transformations and the discrete–discrete evolution equations that can
be associated with this new spectral problem (see [3, 19]) deserve further investigation as
integrable nonlinear iterated maps and moreover offer a good starting point for the introduction
of new ‘integrable’ cellular automata (see, e.g., [22, 23]).
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Finally, all these results could be generalized to the non-Abelian case considering a matrix
discrete Schrödinger operator and matrix differential-difference evolution equations (see, e.g.,
[24]).
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Appendix

In the recursion relation (4.7) for the A(s+1) we choose a(1) = 1 and all other a(s+1) = 0 and
rewrite it in terms of

B(s) = A(s)

N−s+1∏
j=1

q−j . (A.1)

We have

B
(s+1)

1 − B(s+1) = −B
(s)
2

qq1
+

B(s)

q−N+s−1q−N+s

B(0) = 0 (A.2)

and, then, if we choose all integration constants zero,

B(s+1) = δs,0 +
∞∑

k=0

(
B

(s)
k+2

qkqk+1
− B

(s)
k

qk−N+s−1qk−N+s

)
. (A.3)

Now we prove by induction on s that for s � 0

B(s+1) = (−1)s
−1∑

k1=−N

k1+1∑
k2=−N+1

· · ·
kj−1+1∑

kj=−N+j−1

· · ·
ks−1+1∑

ks=−N+s−1

Qk1 · · · Qks
(A.4)

where

Qk = 1

qkqk+1
. (A.5)

From (A.3) we have

B(s+1) = (−1)s+1β1 + (−1)sβ2 (A.6)

where

β1 =
∞∑

k1=0

Qk1

−1∑
k2=−N

k2+1∑
k3=−N+1

· · ·
kj−1+1∑

kj =−N+j−2

· · ·
ks−1+1∑

ks=−N+s−2

Qk2+k1+2 · · ·Qks+k1+2 (A.7)

β2 =
∞∑

k1=0

Qk1−N+s−1

−1∑
k2=−N

k2+1∑
k3=−N+1

· · ·
kj−1+1∑

kj =−N+j−2

· · ·
ks−1+1∑

ks=−N+s−2

Qk2+k1 · · ·Qks +k1 . (A.8)

In (A.7) we introduce k′
j = k1 + kj + 2 for j = 2, . . . , s and renaming k′

j → kj we obtain

β1 =
∞∑

k1=0

k1+1∑
k2=−N+k1+2

· · ·
kj−1+1∑

kj=k1−N+j

· · ·
ks−1+1∑

ks=k1−N+s

Qk1Qk2 · · · Qks
. (A.9)
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In (A.8) we introduce k′
1 = k1 −N + s −1 and k′

j = k1 +kj for j = 2, . . . , s, rename k′
j → kj ,

exchange the first two sums and, then, with k1 ↔ k2

β2 =
−1∑

k1=−N

k1+s−1∑
k2=−N+s−1

k1+1∑
k3=k2−s+2

· · ·
kj−1+1∑

kj =k2+j−s−1

· · ·
ks−1+1∑

ks=k2−1

Qk1 · · · Qks

+
∞∑

k1=0

k1+s−1∑
k2=k1+s−N

k1+1∑
k3=k2−s+2

· · ·
kj−1+1∑

kj=k2+j−s−1

· · ·
ks−1+1∑

ks=k2−1

Qk1 · · · Qks
. (A.10)

Let us consider first of all the second term and exchange the sums from left to right. After
j − 1 inversions, exchanging

∑
kj

and
∑

kj+1
we have with kj ↔ kj+1

∞∑
k1=0

· · ·
kj−2+1∑

kj−1=k1−N+(j−1)

kj−1+1∑
kj=k1−N+j

kj +s−j∑
kj+1=k1+s−N

kj +1∑
kj+2=kj+1+(j+2)−s−1

· · ·
ks−1+1∑

ks=kj+1−1

Qk1 · · · Qks

and we only have to observe that for s = j + 1 the process ends giving for the last sum∑ks−1+1
ks=k1+s−N .

From (A.6), (A.9) and (A.10) it follows exchanging
∑

k2
and

∑
k3

and for k2 ↔ k3 that

B(s+1) = (−1)s
−1∑

k1=−N

k1+1∑
k2=−N+1

k2+s−2∑
k3=−N+s−1

k2+1∑
k4=k3−s+3

· · ·
kj−1+1∑

kj=k3+j−s−1

· · ·
ks−1+1∑

ks=k3−1

Qk1 · · ·Qks

so that after performing all the inversions we recover (A.4).
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